How specialized volatiles respond to chronic and short-term physiological and shock heat stress in Brassica nigra.

نویسندگان

  • Kaia Kask
  • Astrid Kännaste
  • Eero Talts
  • Lucian Copolovici
  • Ülo Niinemets
چکیده

Brassicales release volatile glucosinolate breakdown products upon tissue mechanical damage, but it is unclear how the release of glucosinolate volatiles responds to abiotic stresses such as heat stress. We used three different heat treatments, simulating different dynamic temperature conditions in the field to gain insight into stress-dependent changes in volatile blends and photosynthetic characteristics in the annual herb Brassica nigra (L.) Koch. Heat stress was applied by either heating leaves through temperature response curve measurements from 20 to 40 °C (mild stress), exposing plants for 4 h to temperatures 25-44 °C (long-term stress) or shock-heating leaves to 45-50 °C. Photosynthetic reduction through temperature response curves was associated with decreased stomatal conductance, while the reduction due to long-term stress and collapse of photosynthetic activity after heat shock stress were associated with non-stomatal processes. Mild stress decreased constitutive monoterpene emissions, while long-term stress and shock stress resulted in emissions of the lipoxygenase pathway and glucosinolate volatiles. Glucosinolate volatile release was more strongly elicited by long-term stress and lipoxygenase product released by heat shock. These results demonstrate that glucosinolate volatiles constitute a major part of emission blend in heat-stressed B. nigra plants, especially upon chronic stress that leads to induction responses.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effects of Heat Shock and 2, 4-D Treatment on Morphological and Physiological Characteristics of Microspores and Microspore-Derived Doubled Haploid Plants in Brassica napus L.

Background:  Stresses such as heat shock, starvation, or osmotic is essential to lead isolated microspores towards embryogenesis. Despite the effectiveness of stresses in embryogenesis, they exert adverse effects on metabolism and growth of the regenerated plants. Objectives: The effects of heat shock and 2,4-D treatment on total protein content of treated microspores, morphological and physiol...

متن کامل

Global DNA methylation variations after short-term heat shock treatment in cultured microspores of Brassica napus cv. Topas

Heat stress can induce the cultured microspores into embryogenesis. In this study, whole genome bisulphite sequencing was employed to study global DNA methylation variations after short-term heat shock (STHS) treatments in cultured microspores of Brassica napus cv. Topas. Our results indicated that treatment on cultured Topas microspores at 32 °C for 6 h triggered DNA hypomethylation, particula...

متن کامل

مقایسه سطح پروتئین شوک حرارتی- 70 در مایع سینویال بیماران مبتلا به آرتریت روماتوئید و اوستئوآرتریت

Background: Heat-shock proteins are part of a strictly controlled biological system that allows organisms to respond to environmental stresses. Different proinflammatory cytokines are present in the synovial tissue of rheumatoid arthritis patients. Such tissues respond to stress and induce heat-shock proteins. In addition, synovial cells are exposed to mechanical stress caused by joint motion. ...

متن کامل

Global Gene-Expression Analysis to Identify Differentially Expressed Genes Critical for the Heat Stress Response in Brassica rapa

Genome-wide dissection of the heat stress response (HSR) is necessary to overcome problems in crop production caused by global warming. To identify HSR genes, we profiled gene expression in two Chinese cabbage inbred lines with different thermotolerances, Chiifu and Kenshin. Many genes exhibited >2-fold changes in expression upon exposure to 0.5- 4 h at 45°C (high temperature, HT): 5.2% (2,142 ...

متن کامل

Stress Signaling: Serotonin Spreads Systemic Stress

Cells respond to elevated temperatures through a well-characterized heat-shock response that enables short-term survival, long-term adaptation and mitigation of macromolecular damage. New work reveals a cell non-autonomous layer of stress-response regulation between neurons and the gonad involving serotonin.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Plant, cell & environment

دوره 39 9  شماره 

صفحات  -

تاریخ انتشار 2016